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Abstract. By extrapolation from finite lattices, we extend the known series for the percola- 
tion probability on the directed square lattice from eight terms to 41. Analysing the series, 
we obtain the estimates qc = 0.355 299 * 0.000 001, j3 = 0.27641 0.0001 for the critical proba- 
bility and the critical exponent. From this, together with scaling relations and previous 
results on the moments of the pair-connectedness function, we conjecture that j3 may be 
exactly g. 

1. Introduction 

The bond percolation problem on the directed square lattice has been discussed by 
Blease (1977), Kinzel (1983) and De'Bell and Essam (1983). More recently, Essam et 
al (1986) extended the mean size and second moment of the pair-connectedness 
function series to 35 terms, and in a forthcoming paper Essam et al (1988) report on 
the extension of these series to 49 terms, as well as corresponding series for the directed 
triangular lattice bond and site problems, and the directed square lattice site problem. 
However, for the percolation probability, the longest previously published series has 
remained the eight-term series of Blease. 

We have extended the percolation probability series to 41 terms. In the following 
section we show how we have done this by calculating the probability for finite lattices 
and then extrapolating from these. In Q 3 we report on the analysis of this series, and 
conclude that p = 0.2764* 0.0001. This is consistent with the rational value p = = 

0.276 3888 . . . . In Essam et al (1988) the conjectured values of other exponents are 

y = ;  V L  = E VI1 = s. (1.1) 79 

Scaling then gives the rational value of p we suggest. The aesthetically more appealing 
value p = = 0.2777 . . . is excluded by the numerical evidence. = 

2. Finite-lattice calculations 

Consider a square lattice, drawn diagonally as in figure 1. Place bonds on the edges 
so that each edge has probability p of containing a bond and probability q = 1 - p  of 
being empty. Regard two sites as connected if and only if an observer can walk along 
bonds from the upper to the lower always going downwards (either down and to the 
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B 

Figure 1. The square lattice L, drawn diagonally, showing an arrangment of bonds on its 
edges. 

right, or down and to the left). Thus A and B in figure 1 are connected, as are C and 
B, while A and C are not connected. 

For the infinite system, when q is less than some critical value q c ,  there is an infinite 
cluster; and there is a non-zero probability P ( q )  that a given site V is connected to 
that cluster by a path that runs downwards from V. 

Note that such a path can only lead to points that lie below V, no further to the 
left nor the right than they are below V. This suggests a finite-lattice analogue of P( q ) ,  
namely to consider a pyramid-shaped lattice L of N rows, the top row having one 
site, the next two sites, and so on, as in figure 1 .  Thus there are N sites in the bottom 
row and N (  N + 1)/2 sites altogether. Let V be the site at the apex of L, and define 

PN(  q )  = probability that V is connected to at 
least one site in the bottom row. (2.1) 

P ( q ) =  lim P N ( q ) .  (2.2) 
Then for q < qc we expect that 

N - m  

In fact we can take this as a more precise definition of P ( q ) .  

2.1. Ising model formulation 

We can express P N ( q )  as the partition function of an Ising model on L, with one-, 
two- and three-spin interactions. With each site of L associate a state (or ‘spin’) uj 
such that 

+ 1  

- 1  otherwise. 

if site j is connected to at 
uj-( least one site in the bottom row (2.3) 

We shall write +1,  -1 simply as +, -. 

linked to k (or I )  by a bond, and crk (or a,) must be +l.  
Let k, I be the sites immediately below j ,  as in figure 2. For uj to be +1, j must be 

I 
P’ 

k 
4’ P4 P9 

Figure 2. A site j of L and two lower adjacent sites k, 1. The four possible arrangements 
of bonds on the two edges are shown. I f  U, = - and U, = +, then U, has the values indicated. 
Thus W ( -  I -, +) = $ + p q  = q ;  W ( +  I -, +) = p q  + p Z =  p = 1 + 4. 
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We can therefore define a function 
W (  u, I up , )  = probability that site j is in state a,, 

given that sites k, 1 are in states ffk, ul. (2.4) 
Enumerating the various arrangements of states and of bonds on the edges 

( j ,  k ) ,  ( j ,  l ) ,  some of which are shown in figure 2,  we obtain 
W ( +  I b, c )  = 1 - q(b+c+2) ’2.  (2 .5)  ( b + c + 2 ) / 2  W (  - I b, c )  = 4 

Let fl(al) be the probability that the apex V of L is in state a1 and let f2(ui, a;) 
be the probability that the two sites in the row below V are in states U;, U;, respectively. 
Then it follows that 

( 4 )  = fi ( + ) ( 2 . 6 )  
(2.7) f l (U1) = c c W ( a ,  I d ,  (+5)fdu;, 4 

ui 0; 

More generally, if f , (a , ,  . . . , U,) is the probability that the sites in row r (counting 
downwards from the top) are in states ul, . . . , U,, then 

( 2 . 8 )  X ( ~ I ,  . . .,U,)= c , (cl W(a,laj, u j + l ) ) J + , ( ~ ~ , .  . . , ai+l) 
u;,..,.u*, 

for r = 1 , 2  , . . . ,  N - 1 .  
These relations together with the boundary condition 

N 

f N ( v 1 ,  * . 3 = +) 
j = 1  

( 2 . 9 )  

define the functions f,. They can be thought of as transfer matrix relations (see, e.g., 
Baxter (1982, ch 3 ,  6 ) )  that build up the lattice from the bottom to the top, and are 
the same as those of Bidaux and Forgacs (1984) .  Combining them, we obtain 

f i ( (+ l )  = n W(aj I a k ,  01) (2 .10)  
(U) J 

where the product is over all sites j of L that are above the bottom row. For each site 
j, k and 1 are the two sites below it, as in figure 2.  The sum is over all values 51 of 
each uj, other than the topmost spin a, . The spins in the bottom row are fixed to be 
+ l .  

Thus f l(ul)  is the partition function of an Ising model on L, with interaction 
function w(u, I ( T k ,  al) for each up-pointing triangle j ,  k, 1, and fixed spins at top and 
bottom, as indicated in figure 3. 

v U1 

X + R + + Y 

Figure 3. The lattice L, showing the shaded triangles in which there is an interaction weight 
function W ( q  I uk, , U,) .  
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From (2.5), 

W ( a  I b, c )  = 1 
LI 

for all values of b, c. Summing (2.8) over ul, . . . , uf, it follows that 

c fr(C.1 I ' . . , U f )  = 1 
U, ...., U, 

for r = N ,  N-1, . . . ,  1, so 

(2.11) 

(2.12) 

f i ( + ) + f I ( - - )  = 1 .  (2.13) 

The expression f l (+)  +fl( -) is just the partition function 2 when the top spin m1 
is free to take either value, so we see that 2 is trivially equal to 1 .  We are therefore 
in a rather unusual position where the partition function 2 does not grow or decay 
exponentially with the number of sites, but stays fixed: in fact we have an Ising model 
at a disorder point (Baxter 1984 and references therein). Similarly, we expect P , ( q )  = 
fl(+) to tend to a limit as N becomes large. 

The formulation (2.10) is adequate for our purposes, but it is an unusual Ising 
model in that it contains three-spin interactions on the shaded triangles. In fact we 
can express it as a conventional model on a honeycomb lattice, with only one- and 
two-spin interactions between adjacent spins. To do this, note that (2.5) can be written 
as 

where 

f++ = -1  f+- =f-+ = 1 f-- = 0 

g++ = 4 g+-  = g-+  = g - -  = 1. 

(2.14) 

(2.15) 

This means that the triangle weight function W is the same as that of a three-pointed 
star with centre spin d (which is summed over) and comer spins a, b, c. Replacing 
each shaded triangle in figure 3 by such a star, we obtain the honeycomb lattice of 
figure 4. Hence f l(u,)  is the partition function of a model on this lattice, with weight 
function f(ui, uj) for vertical edges ( i , j )  and g ( a , ,  uj) for non-vertical edges. This is 
a special case of the anisotropic honeycomb lattice Ising model in a magnetic field. 

X R Y 

Figure 4. 
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We can transform from this honeycomb lattice model back to a triangular model 
by summing over the spins at the top of vertical edges. This gives a model rather like 
the original one of figure 3, but now with interactions within down-pointing triangles 
(the unshaded triangles of figure 3) .  This appears to be the end of this sequence of 
transformations; unlike the zero-field Ising model, which can be solved by successive 
triangle-to-star and star-to-triangle transformations (Baxter and Enting 1978, Hilhorst 
et a1 1978). 

2.2. Calculation technique 

For small N one can calculate P N ( q )  by successively using (2.8) and (2.9) to calculate 
fN-', fN-2 , .  . . , f i ;  finally using (2.6). One finds that 

P, (q )  = 1 P2(q)  = 1 - q2 P,(q) = 1 - q2-2q3+ q 4 + 2 q s  - q6 
(2.16) 

P4(q) = 1 -q2-2q3-4q4+6q5+11q6-10q7-  10q8+~0q9+2q '0 -4q ' ' +q '2 .  

We wrote a FORTRAN program to do this to a given order in an expansion in powers 
of q. The method is basically a transfer matrix method and works well, but is limited 
by storage, which grows as 2 N .  To alleviate this problem, we introduced a cut near 
the lower centre of the lattice: the bold line RS in figure 3. We fixed the spins on this 
cut and used the transfer matrix technique to build up the lattice clockwise round S, 
starting from XR, working upwards to VS, then downwards to YR. This was repeated 
for all values of the spins on the cut, and the answer for f l(+) was summed over all 
such repetitions. This means that storage grew only as 2"', though time continued 
to grow as 2N. 

The coefficients of the q-series expansions of fi(a,, . . . , a,) are integers and grow 
quite rapidly with order. We avoided integer overflow by using modular (or residue) 
arithmetic (see chapter 13 of Young and Gregory (1973)). The calculations were 
performed twice, with moduli 10' and lo*+ 1,  respectively: this enables us to handle 
integers as large as 10l6. (Since division was not required, there was no difficulty in 
using non-prime moduli.) 

Using these methods, one of us (RJB) was able to calculate PN ( q )  for N = 1 ,  . . . , 2 4  
to order N+13, using only an Apple MacIntosh. The other ( N G )  continued the 
calculation to N = 29 on an ELXSI and a Microvax 11. 

Unlike other two-dimensional models, we were unable to put it in a form where 
we could use the powerful corner transfer matrix technique (Baxter and Enting 1979, 
Baxter et a1 1980). Even so, we have been able to extend the series to considerable 
length by using the following extrapolation method. 

2.3. Extrapolation 

Let 

Then we always found that 

(2.17) 

(2.18) 
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i.e. going from N to N + 1 leaves the coefficients of 1, q, . . . , q 
consistent with the expectation that P N ( q )  tends to the limit P ( q ) ,  and implies that 

unchanged. This is 

5 

(2.19) 

Thus our finite-lattice results for 1 d N 4 29 immediately give us the first 29 coefficients 
in the series expansion of P ( q ) .  

We were able to significantly improve on this. Let 

drN = ~ N , N + ~ - ~ N + I , N + ~ .  (2.20) 

d',=O r 4 0  (2.21) 

Then from (2.18) 

while d k  is the difference between a N , N + i  and the limiting ( N  + 1)th-order coefficient 
aN+l ,N+l .  Thus d k q N + l  is the leading error of P N ( q ) ,  considered as an approximation 
to P ( q ) .  We observed that 

d:, d i ,  d:, . . .= 1,2, 5, 14,42, 132,. . . . (2.22) 

These are the Catalan numbers (Sloane 1973) 

C N  = ( 2 N ) ! /  N! ( N +  l ) !  (2.23) 

which also occur elsewhere in lattice statistics (Baxter 1987). 
Indeed we find, for all the available values N = 1, . . . ,28, that 

d k = ~ N .  (2.24) 

We assume, as seems eminently reasonable, that this holds for all N. In fact, one 
referee of this paper has pointed out that this can be proved to be so by counting 
appropriate subsets of compact directed animals (cf Bhat et a1 1986, Forgacs and 
Privman 1987). We can therefore use our N = 29 results to calculate a30,30, and hence 
extend the series for P ( q )  by one term. 

The first few numbers d" are 

d: ,  d:, . . .=O, -1, -4, -14, -48, -165,. . . . 
This sequence is also in Sloane (1973): 

d$=2CN-CN+l. (2.25) 

Again, we find that this is true for all our available values N = 1, . . . ,28. Extrapolating 
and taking (r, N) in (2.20) to be (2,29), (1,30), we can successively calculate 
a30,31, c(31.31, and hence extend our series for P ( q )  by one more term. 

Since 

c N / c N - I = ( ~ N - ~ ) / ( N +  1) (2.26) 
these results for d h  and dk suggest that in general d',/cN may be a simple rational 
function of N, with a denominator made up of factors like N + 2, N + 3, . , . , 4 N  - 
2 , 4 N  -6, . . . . We find that this is true for sufficiently large N, and have empirically 
obtained d" for r = 1, . . . , 12. 

Explicitly, for r = 3  and 4: 

d = -~NCN - 2cN + 2cN+l (2.27) 

d = 3 N C N  + ~ C N  - 1 - ~ C N  + ~ C N +  1 - 2 C N + ~ .  (2.28) 
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More generally, it is convenient to define a double set of integers 

N!cN 
CN = CkN = (;) k! ( N  - k)! 

2 r - 4  

e‘,= C P J C N - r + 2 + ]  
j = 1  

3199 

(2.29) 

(2.30a) 

(2.30b) 

and the coefficients P I ,  for r 3 3, are given in table 1 .  
Because of (2.26), there are various linear relations between 

cO.N-1, . . . , C k , N - I ,  cO,N, . . . , Ck,N,  for k 2 1 .  This means that there are infinitely many 
ways of writing (2.30). As far as possible we have chosen forms that involve only 

Table 1. The coefficients p ;  in the extrapolation formula (2.30). 

r 

j 3  4 5  6 7 8 9 10 11 12 

1 -2 2 2  6 
2 2 -5 -6 14 
3 5 -20 58 
4 -2 -2 -73 
5 12 24 
6 -2 -6 
7 0 
8 0 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

28 
40 
76 

218 
-360 

174 
-128 

82 
-15 

0 

168 1188 9 438 
172 940 6 022 
230 916 4 358 
-23 1144 4612 

1185 1609 -55027 
-1619 5684 20 838 

889 -7985 23 543 
-242 4320 -35091 

-15 -1334 23 956 
18 -104 -8 722 

-1  243 2 820 
0 -46 -1 204 

-2 367 
0 -44 

2 
0 

81 796 
43 224 
22 626 

5 5531 158 
-1 358 232 

-317 870 
-52 903 

56 168 
-177 599 

124 506 
-56 441 

18 304 
-5702 

1636 
-250 

8 
-2 

0 

758 472 
337 852 
116 670 

-55 475 799 
14 008 377 
3 608 148 

900 703 
360 976 
405 215 

-793 642 
675 899 

-329 150 
115 282 

-25 924 
954 

1036 
-125 

-12 
2 
0 
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integer coefficients. The d h  are all integers even though fractions occur in d z :  this 
is because c ~ , ~  + c ~ , ~  is always divisible by five. 

The formulae (2.30) are found to be true for all available values of N, provided N 
is sufficiently large that they involve the Catalan numbers c, only for m 5 0 (with 
c,, = 1). For reasons that we do not understand, they are also true if they involve c - ~ ,  
provided we adopt the artificial convention 

c-1= 1. (2.31) 

Thus (2.30) is then valid for 

N a r - 4 .  (2.32) 

(We should like to have a corresponding convention for c-~: this could certainly 
be done by adding terms to e h  proportional to ( ~ N ' - ~ ) C ~ ~ - ~ - ( N ' + ~ ) C ~ , ,  with 
N'= N - r +  5 .  From (2.26) this vanishes for N ' a  1, so only modifies e& when terms 
c - ~ ,  c - ~ ,  . . . , occur. However, we have found no obvious way of doing this.) 

Using the extrapolation formulae (2.30) in (2.20), from the N = 20 results we can 
calculate aN,, ,  for N = 30,. . . , 4 1  and m G 41. From (2.19) we then have the series for 
the directed percolation probability P ( q )  to order 41. The coefficients ( I N N  are given 
in table 2. 

2.4. A transformation of the series 

In the two-dimensional models that have been exactly solved, there is a natural 
parametrisation of the variables in terms of elliptic funcions (Baxter et a1 1975, Baxter 

Table 2. Coefficients aNN and Ah. in P ( 9 )  and P(x),  where 9 = x - x ' - x 4 + x 5  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

1 
0 

-1 
-2 
-4 
-8 

-17 
-38 
-88 

-210 
-511 

-1264 
-3165 
-8006 

-20 426 
-52 472 

-135 682 
-352 562 
-920 924 

-2 414 272 
-6 356 565 

1 
0 

-1 
-2 
-2 

0 
L 

4 
3 
0 

- 1  
6 

28 
72 

139 
242 
407 
722 

1215 
2348 
3753 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

-16 782 444 
-44 470 757 

-1 18 090 648 
-314 580 062 
-839 379 548 

-2 245 969 278 
-6 017 177 104 

-16 161 597 987 
-43 448 897 414 

-117 083 094 891 
-315 709399 172 
-853 195 535 637 

-2 306 601 710 190 
-6 249 350 665 825 

-16933569745596 
-45 982 825 444 918 

-124847 185166968 
-339715065397631 
-923984791735474 

-2518902151116767 
-6861776192406434 

7 186 
9 558 

21 800 
16 576 
61 234 
-7 978 

226 136 
-446 034 
1118 180 

-3 180 033 
6 428 640 

-24 607 343 
56 904 504 

-176 451 720 
379 824 634 

-1 133 204742 
3043377452 

-9 446 665 098 
25288847986 

-68 663 095 038 
179579621084 
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1982). The regularities in the series analysis of P ( q )  suggested that this might have 
similar properties, so we tried expanding P and q as functions of a third variable x :  

oc D 

q = x  n ( 1 - x " ) 4 -  P = P ( q ) =  fl (1-x")Pn. 
n = l  n = l  

(2 .33)  

We looked for solutions in which the exponents p n ,  qn were all small integers with 
some periodicity property. 

We failed to find such a solution, but we did note that if 

(2 .34)  

then the series for P as a function of x had coefficients four orders of magnitude 
smaller than the original series. We also give these reduced coefficients A N  where 

3 4  q = x - x  - x  -xs 

X 

P= A N x N  
N=O 

(2 .35)  

in table 2 :  they at least provide a more compact way of presenting the information 
contained in the a". 

3. Analysis of series 

Order parameter series are usually well suited to analysis by Dlog Pad6 approximants. 
Accordingly, we show in table 3 the standard Dlog Pad6 approximants, where the few 
defective approximants are marked with an asterisk. It can be seen that there is a slow 
but steady downward drift in the estimates of both qc and the exponent p ,  until at 
about N = 1 4  most entries are quite stable, suggesting a value of q,=0.355 299 and 
exponent p =0.2764. For both quantities the consistency of the latter estimates suggests 
error bars of 1 or 2 in the last quoted figure. 

The rational number %=0.276 388 888 . . . is adequately close to the exponent 
estimate p ,  and is the fraction that follows from scaling laws and the earlier estimates 
(Essam et a1 1986) of the exponents y ,  v, and vll . Furthermore, the critical percolation 
probability p c = l - q , = 0 . 6 4 4 7 0 1  is in precise agreement with that found by Essam et 
a1 (1986, 1988). However, if we accept this value of pc and analyse the series using 
first-order inhomogeneous differential approximants, we obtain the results shown in 

Table 3. Dlog Pad6 approximants to the percolation probability series for directed bond 
percolation on the square lattice. The entries give qC (left) and /3 (right) estimates. 

N [ N -  U N 1  [ N I N I  [ N + I I N l  

9 0.355 317 0.276 8 0.355 317 0.276 8 0.355 308 0.276 5 
10 0.355 306 0.276 6 0.355 310* 0.276 7 0.355 302 0.276 51 
11 0.355 300 0.276 45 0.355 303 0.276 5 0.355 3023 0.276 65 
12 0.355 3016 0.276 49 0.355 3011 0.276 48 0.355 2991 0.276 44 
13 0.355 3028* 0.276 52 0.355 3004 0.276 46 0.355 3000 0.276 45 
14 0.355 2995 0.276 43 0.355 2972 0.276 34 0.355 2995 0.276 43 
15 0.355 2991 0.276 42 0.355 2995 0.276 43 0.355 2995 0.276 43 
16 0.355 2995 0.276 43 0.355 2995 0.276 43 0.355 2995 0.276 43 
17 0.355 2995 0.276 43 0.355 2995 0.276 43 0.355 2997' 0.276 44 
18 0.355 2994 0.276 43 
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table 4. These give rise to the estimate /3 = 0.2770 * 0.0003, where the confidence limits 
quoted are three times the apparent scatter in the estimates of p. This estimate 
nevertheless just excludes that given by the Pad6 approximants (which are just 
homogeneous first-order differential approximants) and is closer to the much simpler 
fraction & = 0.2777 . . . , which has the additional appeal that it mirrors the denominator 
conjectured for y, that is, y = $. Together, these then give rise to the estimate a = -2 
and 6 =?. 

We are thus in the situation that two different methods of series analysis gives rise 
to two slightly different exponent estimates. Considering the two methods, it is clear 
that the simpler Pad6 method must be preferred. The basic rule of series analysis is 
that the method used should represent the underlying functional form as closely as 
possible. Inhomogeneous differential approximants are appropriate for functions 
which behave like 

f ( x ) - A ( x ) + B ( x ) ( l  - x I x J P  ( 3 . 1 )  

Table 4. First-order inhomogeneous differential approximants biased at qc = 0.355 299 
giving estimates of p. Entries to the right of the table use most series coefficients. Entries 
are values of [ L / N  - 1; N I ,  [L/ N ;  NI and [ L/ N + 1; N I ,  reading from top to bottom. 

N 

L 9  10 11 12 13 14 15 16 17 18 19 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.2690 
0.2716 
0.2752 
0.2796 
0.2948 
0.2624 
0.2819 
0.2789 
0.2698 
0.2789 
0.2787 
0.2903 
0.2749 
0.2744 
0.2766 
0.2743 
0.2744 
0.2767 
0.3001 
0.2771 
0.2276 
0.2770 
0.2773 
0.2776 
0.2777 
0.2776 
0.2773 
0.2776 
0.2800 
0.2765 

0.2747 
0.2734 
0.2737 
0.2671 

- 1.2162 
0.2766 
0.2724 
0.2784 
0.2791 
0.3058 
0.2504 
0.2777 
0.2776 
0.2767 
0.2770 
0.2765 
0.2771 
0.2339 
0.2774 
0.2776 
0.2770 
0.2776 
0.2773 
0.2766 
0.2773 
0.2774 
0.2770 
0.2756 
0.2770 
0.2775 

0.2737 
0.2724 
0.2745 
0.2765 
0.2794 
0.2768 
0.2791 
0.2790 
0.2781 
0.2776 
0.2751 
0.2781 
0.2770 
0.2775 
0.2769 
0.2787 
0.2773 
0.2768 
0.2769 
0.2777 
0.2767 
0.2754 
0.2773 
0.2595 
0.2769 
0.2777 
0.4090 
0.2782 
0.2774 
0.2770 

0.2743 
0.2757 
0.2754 
0.2768 
0.2763 
0.2779 
0.2782 
0.2781 
0.2782 
0.2781 
0.2764 
0.2773 
0.2769 
0.2769 
0.2768 
0.2768 
0.2768 
0.2769 
0.2769 
0.2776 
0.2777 
0.2745 
0.2843 
0.2769 
0.2720 
0.2768 
0.2769 
0.2770 
0.2769 
0.2769 

0.2754 
0.2755 
0.2757 
0.2777 
0.2762 
0.2759 
0.2784 
0.2765 
0.2772 
0.2773 
0.2768 
0.2773 
0.2768 
0.2768 
0.2769 
0.2769 
0.2768 
0.2773 
0.2778 
0.2771 
0.2775 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2768 
0.2768 

0.2757 
0.2757 
0.2756 
0.2759 
0.2812 
0.2773 
0.2772 
0.2773 
0.2773 
0.2768 
0.2773 
0.2779 
0.2770 
0.2779 
0.2779 
0.2774 
0.2771 
0.2766 
0.2748 
0.2769 
0.2769 
0.2769 
0.2768 
0.2769 
0.2769 
0.2771 
0.2769 
0.2768 
0.2768 
0.2769 

0.2756 
0.2752 
0.2766 
0.2773 
0.2772 
0.2738 
0.2773 
0.2773 
0.2773 
0.2776 
0.2773 
0.2776 
0.2776 
0.2765 
0.2771 
0.2766 
0.2760 
0.2770 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2776 

0.2765 
0.2767 
0.2766 
0.2780 
0.2777 
0.2774 
0.2774 
0.2774 
0.2774 
0.2772 
0.2784 
0.2772 
0.2770 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 

0.2766 

0.2765 
0.2763 
0.2764 
0.2774 
0.2770 
0.2766 
0.2771 
0.2771 
0.2747 
0.2647 
0.2767 
0.2787 
0.2769 
0.2769 
0.2769 
0.2769 
0.2769 
0.2767 
0.2769 
0.2769 

0.2769 

0.2764 
0.2764 
0.2765 
0.2764 
0.2761 
0.2761 
0.2759 
0.2769 
0.2771 
0.2647 
0.2772 
0.2770 
0.2769 
0.2770 

0.2768 

0.2764 
0.2764 
0.2764 
0.2764 
0.2770 
0.2771 
0.2771 
0.2770 

0.2770 
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where A and E are regular in the neighbourhood of x , .  For the order parameter, the 
percolation probability, A ( x , )  = 0. Such special cases of (3.1) are precisely the form 
assumed by the Dlog Pad6 method. The only complicating feature which may be 
present is that of confluent non-analytic terms-corresponding to E being non-regular 
in the vicinity of x , .  Now since A ( x , )  = 0, we can test this possibility by transforming 
the series using the transformation devised by Baker and Hunter (1973). Assuming x ,  
is known, or, as in this case, accurately estimated, we make the substitution 

This produces a power series in 5. Multiplying the coefficient of tk by k! gives an 
auxiliary function F ( 5 )  with the poles located at points equal to the reciprocal of 
critical exponents of J: 

We show estimates of the two largest exponents for a range of diagonal and 
near-diagonal approximants in table 5 .  There it can be seen that the two entries are 
converging to 3.615 and 0.785 or thereabouts. The reciprocal of these values gives the 
dominant and subdominant exponents, which are therefore 0.2766 and 1.274, respec- 
tively; that is, a correction to scaling exponent of 1.003 (neglecting any uncertainties 
in the exponent values). This strongly suggests that the leading correction term is 
analytic. Thus the order parameter appears to be of precisely the functional form (3.1) 
with A ( x , )  = 0 that underlies the Dlog Pad6 method, and so we must favour the results 
from this method. 

x = x,[ 1 - exp( -5)]. (3.2) 

Table 5. Pade approximants to transformed order parameter series assuming qc = 0.355 299. 
The entries give the reciprocal of the dominant (left) and subdominant (right) exponents. 

15 3.6199 0.0843 3.6097 0.7920 3.4907 0.8204 
16 3.6179 0.7808 3.6142 0.7866 3.5610 0.8020 
17 3.6180 0.7793 3.6090 0.7919 3.5608 0.8020 
18 3.6180 0.7794 3.6153 0.7850 3.6207 0.7831 
19 3.6171 0.7837 3.6153 0.7851 3.6151 0.7851 
20 3.6151 0.7851 3.6153 0.7851 3.6147 0.7854 
21 3.6141 0.7854 

Recourse to other methods of series analysis, such as the wide range of ratio type 
methods that exist, is found to be unsatisfactory. Because q, is not the closest singularity 
to the origin, these methods cannot be directly used. A range of transformations have 
also been tried, but these do not produce exponent estimates of sufficient accuracy. 
Indeed, the estimates of p obtained by these methods is typically 0.275 * 0.001. 

Accordingly, we conclude that p = 0.2764*0.0001, and that the fraction is the 
most likely exact rational. That being said, the appeal of the slightly larger fraction 

find any convincing numerical evidence to favour this value. 
_ -  :8 - 0.2777 . . . is undeniably far greater aesthetically. Regrettably, we are unable to 
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