Series expansion of the percolation probability for the directed square lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 213193
(http://iopscience.iop.org/0305-4470/21/15/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:56

Please note that terms and conditions apply.

Series expansion of the percolation probability for the directed square lattice

R J Baxter \dagger and A J Guttmann \ddagger
\dagger Department of Theoretical Physics, Institute of Advanced Studies, Australian National University, GPO Box 4, Canberra, ACT 2601, Australia
\ddagger Department of Mathematics, Melbourne University, Parkville, Victoria 3052, Australia

Received 24 February 1988

Abstract

By extrapolation from finite lattices, we extend the known series for the percolation probability on the directed square lattice from eight terms to 41 . Analysing the series, we obtain the estimates $q_{c}=0.355299 \pm 0.000001, \beta=0.2764 \pm 0.0001$ for the critical probability and the critical exponent. From this, together with scaling relations and previous results on the moments of the pair-connectedness function, we conjecture that β may be exactly $\frac{199}{720}$.

1. Introduction

The bond percolation problem on the directed square lattice has been discussed by Blease (1977), Kinzel (1983) and De'Bell and Essam (1983). More recently, Essam et al (1986) extended the mean size and second moment of the pair-connectedness function series to 35 terms, and in a forthcoming paper Essam et al (1988) report on the extension of these series to 49 terms, as well as corresponding series for the directed triangular lattice bond and site problems, and the directed square lattice site problem. However, for the percolation probability, the longest previously published series has remained the eight-term series of Blease.

We have extended the percolation probability series to 41 terms. In the following section we show how we have done this by calculating the probability for finite lattices and then extrapolating from these. In $\S 3$ we report on the analysis of this series, and conclude that $\beta=0.2764 \pm 0.0001$. This is consistent with the rational value $\beta=\frac{199}{720}=$ $0.2763888 \ldots$. In Essam et al (1988) the conjectured values of other exponents are

$$
\begin{equation*}
\gamma=\frac{41}{18} \quad \nu_{\perp}=\frac{79}{72} \quad \nu_{\| \mid}=\frac{26}{15} . \tag{1.1}
\end{equation*}
$$

Scaling then gives the rational value of β we suggest. The aesthetically more appealing value $\beta=\frac{200}{720}=\frac{5}{18}=0.2777 \ldots$ is excluded by the numerical evidence.

2. Finite-lattice calculations

Consider a square lattice, drawn diagonally as in figure 1. Place bonds on the edges so that each edge has probability p of containing a bond and probability $q=1-p$ of being empty. Regard two sites as connected if and only if an observer can walk along bonds from the upper to the lower always going downwards (either down and to the

Figure 1. The square lattice L, drawn diagonally, showing an arrangment of bonds on its edges.
right, or down and to the left). Thus A and B in figure 1 are connected, as are C and B, while A and C are not connected.

For the infinite system, when q is less than some critical value q_{c}, there is an infinite cluster; and there is a non-zero probability $P(q)$ that a given site V is connected to that cluster by a path that runs downwards from V.

Note that such a path can only lead to points that lie below V, no further to the left nor the right than they are below V . This suggests a finite-lattice analogue of $P(q)$, namely to consider a pyramid-shaped lattice L of N rows, the top row having one site, the next two sites, and so on, as in figure 1. Thus there are N sites in the bottom row and $N(N+1) / 2$ sites altogether. Let V be the site at the apex of L, and define

$$
\begin{align*}
& P_{N}(q)= \text { probability that } V \text { is connected to at } \\
& \text { least one site in the bottom row. } \tag{2.1}
\end{align*}
$$

Then for $q<q_{c}$ we expect that

$$
\begin{equation*}
P(q)=\lim _{N \rightarrow \infty} P_{N}(q) \tag{2.2}
\end{equation*}
$$

In fact we can take this as a more precise definition of $P(q)$.

2.1. Ising model formulation

We can express $P_{N}(q)$ as the partition function of an Ising model on L, with one-, two- and three-spin interactions. With each site of L associate a state (or 'spin') σ_{j} such that

$$
\sigma_{j}= \begin{cases}+1 & \text { if site } j \text { is connected to at } \tag{2.3}\\ -1 & \text { least one site in the bottom row } \\ \text { otherwise. }\end{cases}
$$

We shall write $+1,-1$ simply as,+- .
Let k, l be the sites immediately below j, as in figure 2 . For σ_{j} to be $+1, j$ must be linked to k (or l) by a bond, and σ_{k} (or σ_{l}) must be +1 .

q^{2}

$P Q$

$P Q$

p^{2}

Figure 2. A site j of L and two lower adjacent sites k, l. The four possible arrangements of bonds on the two edges are shown. If $\sigma_{k}=-$ and $\sigma_{i}=+$, then σ_{j} has the values indicated. Thus $W(-\mid-,+)=q^{2}+p q=q ; W(+\mid-,+)=p q+p^{2}=p=1+q$.

We can therefore define a function

$$
\begin{align*}
W\left(\sigma_{j} \mid \sigma_{k} \sigma_{l}\right)= & \text { probability that site } j \text { is in state } \sigma_{j}, \\
& \text { given that sites } k, l \text { are in states } \sigma_{k}, \sigma_{l} . \tag{2.4}
\end{align*}
$$

Enumerating the various arrangements of states and of bonds on the edges $(j, k),(j, l)$, some of which are shown in figure 2 , we obtain

$$
\begin{equation*}
W(-\mid b, c)=q^{(b+c+2) / 2} \quad W(+\mid b, c)=1-q^{(b+c+2) / 2} \tag{2.5}
\end{equation*}
$$

Let $f_{1}\left(\sigma_{1}\right)$ be the probability that the apex V of L is in state σ_{1} and let $f_{2}\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right)$ be the probability that the two sites in the row below V are in states $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$, respectively. Then it follows that

$$
\begin{align*}
& P_{N}(q)=f_{1}(+) \tag{2.6}\\
& f_{1}\left(\sigma_{1}\right)=\sum_{\sigma_{1}^{\prime}} \sum_{\sigma_{2}^{\prime}} W\left(\sigma_{1} \mid \sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right) f_{2}\left(\sigma_{1}^{\prime}, \sigma_{2}^{\prime}\right) \tag{2.7}
\end{align*}
$$

More generally, if $f_{r}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ is the probability that the sites in row r (counting downwards from the top) are in states $\sigma_{1}, \ldots, \sigma_{r}$, then

$$
\begin{equation*}
f_{r}\left(\sigma_{1}, \ldots, \sigma_{r}\right)=\sum_{\sigma_{1}, \ldots, \sigma_{+1}^{\prime}}\left(\prod_{j=1}^{r} W\left(\sigma_{j} \mid \sigma_{j}^{\prime}, \sigma_{j+1}^{\prime}\right)\right) f_{r+1}\left(\sigma_{1}^{\prime}, \ldots, \sigma_{r+1}^{\prime}\right) \tag{2.8}
\end{equation*}
$$

for $r=1,2, \ldots, N-1$.
These relations together with the boundary condition

$$
\begin{equation*}
f_{N}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\prod_{j=1}^{N} \delta\left(\sigma_{j},+\right) \tag{2.9}
\end{equation*}
$$

define the functions f_{r}. They can be thought of as transfer matrix relations (see, e.g., Baxter (1982, ch 3,6)) that build up the lattice from the bottom to the top, and are the same as those of Bidaux and Forgacs (1984). Combining them, we obtain

$$
\begin{equation*}
f_{1}\left(\sigma_{1}\right)=\sum_{\{\sigma\}} \prod_{j} W\left(\sigma_{j} \mid \sigma_{k}, \sigma_{l}\right) \tag{2.10}
\end{equation*}
$$

where the product is over all sites j of L that are above the bottom row. For each site j, k and l are the two sites below it, as in figure 2 . The sum is over all values ± 1 of each σ_{j}, other than the topmost spin σ_{1}. The spins in the bottom row are fixed to be +1 .

Thus $f_{1}\left(\sigma_{1}\right)$ is the partition function of an Ising model on L, with interaction function $W\left(\sigma_{j} \mid \sigma_{k}, \sigma_{l}\right)$ for each up-pointing triangle j, k, l, and fixed spins at top and bottom, as indicated in figure 3.

Figure 3. The lattice L, showing the shaded triangles in which there is an interaction weight function $W\left(\sigma_{j} \mid \sigma_{k_{1}}, \sigma_{l}\right)$.

From (2.5),

$$
\begin{equation*}
\sum_{a} W(a \mid b, c)=1 \tag{2.11}
\end{equation*}
$$

for all values of b, c. Summing (2.8) over $\sigma_{1}, \ldots, \sigma_{r}$, it follows that

$$
\begin{equation*}
\sum_{\sigma_{1}, \ldots, \sigma_{r}} f_{r}\left(\sigma_{1}, \ldots, \sigma_{r}\right)=1 \tag{2.12}
\end{equation*}
$$

for $r=N, N-1, \ldots, 1$, so

$$
\begin{equation*}
f_{1}(+)+f_{1}(-)=1 \tag{2.13}
\end{equation*}
$$

The expression $f_{1}(+)+f_{1}(-)$ is just the partition function Z when the top spin σ_{1} is free to take either value, so we see that Z is trivially equal to 1 . We are therefore in a rather unusual position where the partition function Z does not grow or decay exponentially with the number of sites, but stays fixed: in fact we have an Ising model at a disorder point (Baxter 1984 and references therein). Similarly, we expect $P_{N}(q)=$ $f_{1}(+)$ to tend to a limit as N becomes large.

The formulation (2.10) is adequate for our purposes, but it is an unusual Ising model in that it contains three-spin interactions on the shaded triangles. In fact we can express it as a conventional model on a honeycomb lattice, with only one- and two-spin interactions between adjacent spins. To do this, note that (2.5) can be written as

$$
\begin{equation*}
W(a \mid b, c)=\sum_{d= \pm} f_{a d} g_{b d} g_{c d} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{array}{ll}
f_{++}=-1 & f_{+-}=f_{-+}=1 \quad f_{--}=0 \tag{2.15}\\
g_{++}=q & g_{+-}=g_{-+}=g_{--}=1 .
\end{array}
$$

This means that the triangle weight function W is the same as that of a three-pointed star with centre spin d (which is summed over) and corner spins a, b, c. Replacing each shaded triangle in figure 3 by such a star, we obtain the honeycomb lattice of figure 4. Hence $f_{1}\left(\sigma_{1}\right)$ is the partition function of a model on this lattice, with weight function $f\left(\sigma_{i}, \sigma_{j}\right)$ for vertical edges (i, j) and $g\left(\sigma_{i}, \sigma_{j}\right)$ for non-vertical edges. This is a special case of the anisotropic honeycomb lattile Ising model in a magnetic field.

Figure 4.

We can transform from this honeycomb lattice model back to a triangular model by summing over the spins at the top of vertical edges. This gives a model rather like the original one of figure 3, but now with interactions within down-pointing triangles (the unshaded triangles of figure 3). This appears to be the end of this sequence of transformations; unlike the zero-field Ising model, which can be solved by successive triangle-to-star and star-to-triangle transformations (Baxter and Enting 1978, Hilhorst et al 1978).

2.2. Calculation technique

For small N one can calculate $P_{N}(q)$ by successively using (2.8) and (2.9) to calculate $f_{N-1}, f_{N-2}, \ldots, f_{1}$; finally using (2.6). One finds that

$$
\begin{align*}
& P_{1}(q)=1 \quad P_{2}(q)=1-q^{2} \quad P_{3}(q)=1-q^{2}-2 q^{3}+q^{4}+2 q^{5}-q^{6} \\
& P_{4}(q)=1-q^{2}-2 q^{3}-4 q^{4}+6 q^{5}+11 q^{6}-10 q^{7}-10 q^{8}+10 q^{9}+2 q^{10}-4 q^{11}+q^{12} . \tag{2.16}
\end{align*}
$$

We wrote a FORTRAN program to do this to a given order in an expansion in powers of q. The method is basically a transfer matrix method and works well, but is limited by storage, which grows as 2^{N}. To alleviate this problem, we introduced a cut near the lower centre of the lattice: the bold line RS in figure 3. We fixed the spins on this cut and used the transfer matrix technique to build up the lattice clockwise round S , starting from XR, working upwards to VS, then downwards to YR. This was repeated for all values of the spins on the cut, and the answer for $f_{1}(+)$ was summed over all such repetitions. This means that storage grew only as $2^{N / 2}$, though time continued to grow as 2^{N}.

The coefficients of the q-series expansions of $f_{r}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ are integers and grow quite rapidly with order. We avoided integer overflow by using modular (or residue) arithmetic (see chapter 13 of Young and Gregory (1973)). The calculations were performed twice, with moduli 10^{8} and $10^{8}+1$, respectively: this enables us to handle integers as large as 10^{16}. (Since division was not required, there was no difficulty in using non-prime moduli.)

Using these methods, one of us (RJB) was able to calculate $P_{N}(q)$ for $N=1, \ldots, 24$ to order $N+13$, using only an Apple MacIntosh. The other (AJG) continued the calculation to $N=29$ on an ELXSI and a Microvax II.

Unlike other two-dimensional models, we were unable to put it in a form where we could use the powerful corner transfer matrix technique (Baxter and Enting 1979, Baxter et al 1980). Even so, we have been able to extend the series to considerable length by using the following extrapolation method.

2.3. Extrapolation

Let

$$
\begin{equation*}
P_{N}(q)=\sum_{m=0}^{\infty} a_{N m} q^{m} \tag{2.17}
\end{equation*}
$$

Then we always found that

$$
\begin{equation*}
a_{N m}=a_{m m} \quad N \geqslant m \tag{2.18}
\end{equation*}
$$

i.e. going from N to $N+1$ leaves the coefficients of $1, q, \ldots, q^{N}$ unchanged. This is consistent with the expectation that $P_{N}(q)$ tends to the limit $P(q)$, and implies that

$$
\begin{equation*}
P(q)=P_{\infty}(q)=\sum_{N=0}^{\infty} a_{N N} q^{N} . \tag{2.19}
\end{equation*}
$$

Thus our finite-lattice results for $1 \leqslant N \leqslant 29$ immediately give us the first 29 coefficients in the series expansion of $P(q)$.

We were able to significantly improve on this. Let

$$
\begin{equation*}
d_{N}^{r}=a_{N, N+r}-a_{N+1, N+r} . \tag{2.20}
\end{equation*}
$$

Then from (2.18)

$$
\begin{equation*}
d_{N}^{r}=0 \quad r \leqslant 0 \tag{2.21}
\end{equation*}
$$

while d_{N}^{1} is the difference between $a_{N, N+1}$ and the limiting ($N+1$)th-order coefficient $a_{N+1, N+1}$. Thus $d_{N}^{1} q^{N+1}$ is the leading error of $P_{N}(q)$, considered as an approximation to $P(q)$. We observed that

$$
\begin{equation*}
d_{1}^{1}, d_{2}^{1}, d_{3}^{1}, \ldots=1,2,5,14,42,132, \ldots \tag{2.22}
\end{equation*}
$$

These are the Catalan numbers (Sloane 1973)

$$
\begin{equation*}
c_{N}=(2 N)!/ N!(N+1)! \tag{2.23}
\end{equation*}
$$

which also occur elsewhere in lattice statistics (Baxter 1987).
Indeed we find, for all the available values $N=1, \ldots, 28$, that

$$
\begin{equation*}
d_{N}^{1}=c_{N} \tag{2.24}
\end{equation*}
$$

We assume, as seems eminently reasonable, that this holds for all N. In fact, one referee of this paper has pointed out that this can be proved to be so by counting appropriate subsets of compact directed animals (cf Bhat et al 1986, Forgacs and Privman 1987). We can therefore use our $N=29$ results to calculate $a_{30,30}$, and hence extend the series for $P(q)$ by one term.

The first few numbers d_{N}^{2} are

$$
d_{1}^{2}, d_{2}^{2}, \ldots=0,-1,-4,-14,-48,-165, \ldots
$$

This sequence is also in Sloane (1973):

$$
\begin{equation*}
d_{N}^{2}=2 c_{N}-c_{N+1} \tag{2.25}
\end{equation*}
$$

Again, we find that this is true for all our available values $N=1, \ldots, 28$. Extrapolating and taking (r, N) in (2.20) to be $(2,29),(1,30)$, we can successively calculate $a_{30,31}, a_{31,31}$, and hence extend our series for $P(q)$ by one more term.

Since

$$
\begin{equation*}
c_{N} / c_{N-1}=(4 N-2) /(N+1) \tag{2.26}
\end{equation*}
$$

these results for d_{N}^{1} and d_{N}^{2} suggest that in general d_{N}^{r} / c_{N} may be a simple rational function of N, with a denominator made up of factors like $N+2, N+3, \ldots, 4 N-$ $2,4 N-6, \ldots$. We find that this is true for sufficiently large N, and have empirically obtained d_{N}^{r} for $r=1, \ldots, 12$.

Explicitly, for $r=3$ and 4:

$$
\begin{align*}
& d_{N}^{3}=-2 N c_{N}-2 c_{N}+2 c_{N+1} \tag{2.27}\\
& d_{N}^{4}=3 N c_{N}+2 c_{N-1}-5 c_{N}+5 c_{N+1}-2 c_{N+2} \tag{2.28}
\end{align*}
$$

More generally, it is convenient to define a double set of integers

$$
\begin{equation*}
c_{k, N}=\binom{N}{k} c_{N}=\frac{N!c_{N}}{k!(N-k)!} \tag{2.29}
\end{equation*}
$$

(thus $c_{0, N}=c_{N}$ is the N th Catalan number). Then

$$
\begin{align*}
& d_{N}^{3}=-2 c_{1, N}+e_{N}^{3} \quad d_{N}^{4}=3 c_{1, N}+e_{N}^{4} \quad d_{N}^{5}=-38 c_{1, N-1}+4 c_{2, N}+e_{N}^{5} \\
& d_{N}^{6}=13 c_{1, N}-4 c_{2, N}+e_{N}^{6} \quad d_{N}^{7}=-90 c_{1, N-1}+15 c_{2, N}-8 c_{3, N}+e_{N}^{7} \\
& d_{N}^{8}=-745 c_{1, N-2}-5 c_{2, N}+4 c_{3, N}+e_{N}^{8} \\
& d_{N}^{9}=1947 c_{1, N-1}+51 c_{2, N-1}-24 c_{3, N}+16 c_{4, N}+e_{N}^{9} \tag{2.30a}\\
& d_{N}^{10}=-121497 c_{1, N-3}+3566 c_{2, N-2}-19 c_{3, N}+e_{N}^{10} \\
& d_{N}^{11}=11065702 c_{1, N-5}-14441 c_{2, N-2}+6 c_{3, N}+40 c_{4, N}-32 c_{5, N}+e_{N}^{11} \\
& d_{N}^{12}=-111135855 c_{1, N-6}+251284 c_{2, N-3}-5888_{5}^{2} c_{3, N}+81 \frac{3}{5} c_{4, N}-16 c_{5, N}+e_{N}^{12}
\end{align*}
$$

where

$$
\begin{equation*}
e_{N}^{r}=\sum_{j=1}^{2 r-4} \beta_{j}^{r} c_{N-r+2+j} \tag{2.30b}
\end{equation*}
$$

and the coefficients β_{j}^{r}, for $r \geqslant 3$, are given in table 1 .
Because of (2.26), there are various linear relations between $c_{0, N-1}, \ldots, c_{k, N-1}, c_{0, N}, \ldots, c_{k, N}$, for $k \geqslant 1$. This means that there are infinitely many ways of writing (2.30). As far as possible we have chosen forms that involve only

Table 1. The coefficients β_{j}^{r} in the extrapolation formula (2.30).

r										
j	3	4	5	6	7	8	9	10	11	12
1	-2	2	2	6	28	168	1188	9438	81796	758472
2	2	-5	-6	14	40	172	940	6022	43224	337852
3		5	-20	58	76	230	916	4358	22626	116670
4		-2	-2	-73	218	-23	1144	4612	55531158	-55475799
5			12	24	-360	1185	1609	-55027	-1 358232	14008377
6			-2	-6	174	-1619	5684	20838	-317870	3608148
7				0	-128	889	-7985	23543	-52903	900703
8				0	82	-242	4320	-35091	56168	360976
9					-15	-15	-1334	23956	-177599	405215
10					0	18	-104	-8722	124506	-793642
11						-1	243	2820	-56441	675899
12						0	-46	-1204	18304	-329 150
13							-2	367	-5702	115282
14							0	-44	1636	-25924
15								2	-250	954
16								0	8	1036
17									-2	-125
18									0	-12
19										2
20										0

integer coefficients. The d_{N}^{\prime} are all integers even though $\frac{1}{5}$ fractions occur in d_{N}^{12} : this is because $c_{3, N}+c_{4, N}$ is always divisible by five.

The formulae (2.30) are found to be true for all available values of N, provided N is sufficiently large that they involve the Catalan numbers c_{m} only for $m \geqslant 0$ (with $c_{0}=1$). For reasons that we do not understand, they are also true if they involve c_{-1}, provided we adopt the artificial convention

$$
\begin{equation*}
c_{-1}=1 \tag{2.31}
\end{equation*}
$$

Thus (2.30) is then valid for

$$
\begin{equation*}
N \geqslant r-4 \tag{2.32}
\end{equation*}
$$

(We should like to have a corresponding convention for c_{-2} : this could certainly be done by adding terms to e_{N}^{r} proportional to $\left(4 N^{\prime}-2\right) c_{N^{\prime}-1}-\left(N^{\prime}+1\right) c_{N^{\prime}}$, with $N^{\prime}=N-r+5$. From (2.26) this vanishes for $N^{\prime} \geqslant 1$, so only modifies e_{N}^{r} when terms c_{-2}, c_{-3}, \ldots, occur. However, we have found no obvious way of doing this.)

Using the extrapolation formulae (2.30) in (2.20), from the $N=20$ results we can calculate $a_{N, m}$ for $N=30, \ldots, 41$ and $m \leqslant 41$. From (2.19) we then have the series for the directed percolation probability $P(q)$ to order 41 . The coefficients $a_{N N}$ are given in table 2.

2.4. A transformation of the series

In the two-dimensional models that have been exactly solved, there is a natural parametrisation of the variables in terms of elliptic funcions (Baxter et al 1975, Baxter

Table 2. Coefficients $a_{N N}$ and λ_{N} in $P(q)$ and $P(x)$, where $q=x-x^{3}-x^{4}+x^{5}$.

N	$a_{\text {NN }}$	λ_{N}	N	$a_{N N}$	λ_{N}
0	1	1	21	-16782 444	7186
1	0	0	22	-44 470757	9558
2	-1	-1	23	-118090648	21800
3	-2	-2	24	-314580 062	16576
4	-4	-2	25	-839 379548	61234
5	-8	0	26	-2 245969278	-7978
6	-17	2	27	-6017177104	226136
7	-38	4	28	-16161597987	-446 034
8	-88	3	29	-43 448897414	1118180
9	-210	0	30	-117083094891	-3180033
10	-511	-1	31	-315709 399172	6428640
11	-1264	6	32	-853195 535637	-24607343
12	-3165	28	33	-2306601710 190	56904504
13	-8006	72	34	-6 249350665825	-176451720
14	-20 426	139	35	-16933 569745596	379824634
15	-52472	242	36	-45982825 444918	-1133 204742
16	-135682	407	37	-124847185 166968	3043377452
17	-352 562	722	38	-339715065 397631	-9 446665098
18	-920 924	1215	39	-923984791735474	25288847986
19	-2414 272	2348	40	-2518902151116767	-68 663095038
20	-6356565	3753	41	-6861776192406434	179579621084

1982). The regularities in the series analysis of $P(q)$ suggested that this might have similar properties, so we tried expanding P and q as functions of a third variable x :

$$
\begin{equation*}
q=x \prod_{n=1}^{\infty}\left(1-x^{n}\right)^{q_{n}} \quad P=P(q)=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{p_{n}} . \tag{2.33}
\end{equation*}
$$

We looked for solutions in which the exponents p_{n}, q_{n} were all small integers with some periodicity property.

We failed to find such a solution, but we did note that if

$$
\begin{equation*}
q=x-x^{3}-x^{4}-x^{5} \tag{2.34}
\end{equation*}
$$

then the series for P as a function of x had coefficients four orders of magnitude smaller than the original series. We also give these reduced coefficients λ_{N} where

$$
\begin{equation*}
P=\sum_{N=0}^{\infty} \lambda_{N} x^{N} \tag{2.35}
\end{equation*}
$$

in table 2: they at least provide a more compact way of presenting the information contained in the $a_{N N}$.

3. Analysis of series

Order parameter series are usually well suited to analysis by Dlog Padé approximants. Accordingly, we show in table 3 the standard Dlog Padé approximants, where the few defective approximants are marked with an asterisk. It can be seen that there is a slow but steady downward drift in the estimates of both q_{c} and the exponent β, until at about $N=14$ most entries are quite stable, suggesting a value of $q_{c}=0.355299$ and exponent $\beta=0.2764$. For both quantities the consistency of the latter estimates suggests error bars of 1 or 2 in the last quoted figure.

The rational number $\frac{199}{720}=0.276388888 \ldots$ is adequately close to the exponent estimate β, and is the fraction that follows from scaling laws and the earlier estimates (Essam et al 1986) of the exponents γ, ν_{\perp} and $\nu_{\|}$. Furthermore, the critical percolation probability $p_{c}=1-q_{c}=0.644701$ is in precise agreement with that found by Essam et al (1986, 1988). However, if we accept this value of p_{c} and analyse the series using first-order inhomogeneous differential approximants, we obtain the results shown in

Table 3. Dlog Padé approximants to the percolation probability series for directed bond percolation on the square lattice. The entries give q_{c} (left) and β (right) estimates.

N	$[N-1 / N]$		$[N / N]$		$[N+1 / N]$	
9	0.355317	0.2768	0.355317	0.2768	0.355308	0.2765
10	0.355306	0.2766	0.355310^{*}	0.2767	0.355302	0.27651
11	0.355300	0.27645	0.355303	0.2765	0.3553023	0.27665
12	0.3553016	0.27649	0.3553011	0.27648	0.3552997	0.27644
13	0.3553028^{*}	0.27652	0.3553004	0.27646	0.3553000	0.27645
14	0.3552995	0.27643	0.3552972	0.27634	0.3552995	0.27643
15	0.3552991	0.27642	0.3552995	0.27643	0.3552995	0.27643
16	0.3552995	0.27643	0.3552995	0.27643	0.3552995	0.27643
17	0.3552995	0.27643	0.3552995	0.27643	0.3552997^{*}	0.27644
18	0.3552994	0.27643				

table 4. These give rise to the estimate $\beta=0.2770 \pm 0.0003$, where the confidence limits quoted are three times the apparent scatter in the estimates of β. This estimate nevertheless just excludes that given by the Padé approximants (which are just homogeneous first-order differential approximants) and is closer to the much simpler fraction $\frac{5}{18}=0.2777 \ldots$, which has the additional appeal that it mirrors the denominator conjectured for γ, that is, $\gamma=\frac{41}{18}$. Together, these then give rise to the estimate $\alpha=-\frac{5}{6}$ and $\delta=\frac{46}{5}$.

We are thus in the situation that two different methods of series analysis gives rise to two slightly different exponent estimates. Considering the two methods, it is clear that the simpler Padé method must be preferred. The basic rule of series analysis is that the method used should represent the underlying functional form as closely as possible. Inhomogeneous differential approximants are appropriate for functions which behave like

$$
\begin{equation*}
f(x) \sim A(x)+B(x)\left(1-x / x_{\mathrm{c}}\right)^{\beta} \tag{3.1}
\end{equation*}
$$

Table 4. First-order inhomogeneous differential approximants biased at $q_{\mathrm{c}}=0.355299$ giving estimates of β. Entries to the right of the table use most series coefficients. Entries are values of $[L / N-1 ; N],[L / N ; N]$ and $[L / N+1 ; N]$, reading from top to bottom.

	N										
L	9	10	11	12	13	14	15	16	17	18	19
1	0.2690	0.2747	0.2737	0.2743	0.2754	0.2757	0.2756	0.2765	0.2765	0.2764	0.2764
	0.2716	0.2734	0.2724	0.2757	0.2755	0.2757	0.2752	0.2767	0.2763	0.2764	0.2764
	0.2752	0.2737	0.2745	0.2754	0.2757	0.2756	0.2766	0.2766	0.2764	0.2765	0.2764
2	0.2796	0.2671	0.2765	0.2768	0.2777	0.2759	0.2773	0.2780	0.2774	0.2764	0.2764
	0.2948	-1.2162	0.2794	0.2763	0.2762	0.2812	0.2772	0.2777	0.2770	0.2761	0.2770
	0.2624	0.2766	0.2768	0.2779	0.2759	0.2773	0.2738	0.2774	0.2766	0.2761	0.2771
3	0.2819	0.2724	0.2791	0.2782	0.2784	0.2772	0.2773	0.2774	0.2771	0.2759	0.2771
	0.2789	0.2784	0.2790	0.2781	0.2765	0.2773	0.2773	0.2774	0.2771	0.2769	0.2770
	0.2698	0.2791	0.2781	0.2782	0.2772	0.2773	0.2773	0.2774	0.2747	0.2771	
4	0.2789	0.3058	0.2776	0.2781	0.2773	0.2768	0.2776	0.2772	0.2647	0.2647	0.2770
	0.2787	0.2504	0.2751	0.2764	0.2768	0.2773	0.2773	0.2784	0.2767	0.2772	
	0.2903	0.2777	0.2781	0.2773	0.2773	0.2779	0.2776	0.2772	0.2787	0.2770	
5	0.2749	0.2776	0.2770	0.2769	0.2768	0.2770	0.2776	0.2770	0.2769	0.2769	
	0.2744	0.2767	0.2775	0.2769	0.2768	0.2779	0.2765	0.2769	0.2769	0.2770	
	0.2766	0.2770	0.2769	0.2768	0.2769	0.2779	0.2771	0.2769	0.2769		
6	0.2743	0.2765	0.2787	0.2768	0.2769	0.2774	0.2766	0.2769	0.2769	0.2768	
	0.2744	0.2771	0.2773	0.2768	0.2768	0.2771	0.2760	0.2769	0.2769		
	0.2767	0.2339	0.2768	0.2769	0.2773	0.2766	0.2770	0.2769	0.2767		
7	0.3001	0.2774	0.2769	0.2769	0.2778	0.2748	0.2769	0.2769	0.2769		
	0.2771	0.2776	0.2777	0.2776	0.2771	0.2769	0.2769	0.2769	0.2769		
	0.2276	0.2770	0.2767	0.2777	0.2775	0.2769	0.2769	0.2769			
8	0.2770	0.2776	0.2754	0.2745	0.2769	0.2769	0.2769	0.2769	0.2769		
	0.2773	0.2773	0.2773	0.2843	0.2769	0.2768	0.2769	0.2769			
	0.2776	0.2766	0.2595	0.2769	0.2769	0.2769	0.2769	0.2769			
9	0.2777	0.2773	0.2769	0.2720	0.2769	0.2769	0.2769	0.2769			
	0.2776	0.2774	0.2777	0.2768	0.2769	0.2771	0.2769	0.2769			
	0.2773	0.2770	0.4090	0.2769	0.2769	0.2769	0.2769				
10	0.2776	0.2756	0.2782	0.2770	0.2769	0.2768	0.2769	0.2766			
	0.2800	0.2770	0.2774	0.2769	0.2768	0.2768	0.2769				
	0.2765	0.2775	0.2770	0.2769	0.2768	0.2769	0.2776				

where A and B are regular in the neighbourhood of x_{c}. For the order parameter, the percolation probability, $A\left(x_{\mathrm{c}}\right)=0$. Such special cases of (3.1) are precisely the form assumed by the Dlog Padé method. The only complicating feature which may be present is that of confluent non-analytic terms-corresponding to B being non-regular in the vicinity of x_{c}. Now since $A\left(x_{\mathrm{c}}\right)=0$, we can test this possibility by transforming the series using the transformation devised by Baker and Hunter (1973). Assuming x_{c} is known, or, as in this case, accurately estimated, we make the substitution

$$
\begin{equation*}
x=x_{\mathrm{c}}[1-\exp (-\xi)] . \tag{3.2}
\end{equation*}
$$

This produces a power series in ξ. Multiplying the coefficient of ξ^{k} by k ! gives an auxiliary function $F(\xi)$ with the poles located at points equal to the reciprocal of critical exponents of f.

We show estimates of the two largest exponents for a range of diagonal and near-diagonal approximants in table 5. There it can be seen that the two entries are converging to 3.615 and 0.785 or thereabouts. The reciprocal of these values gives the dominant and subdominant exponents, which are therefore 0.2766 and 1.274 , respectively; that is, a correction to scaling exponent of 1.003 (neglecting any uncertainties in the exponent values). This strongly suggests that the leading correction term is analytic. Thus the order parameter appears to be of precisely the functional form (3.1) with $A\left(x_{\mathrm{c}}\right)=0$ that underlies the Dlog Padé method, and so we must favour the results from this method.

Table 5. Padé approximants to transformed order parameter series assuming $q_{c}=0.355299$. The entries give the reciprocal of the dominant (left) and subdominant (right) exponents.

N	$[N-1 / N]$		$[N / N]$		$[N+1 / N]$	
15	3.6199	0.0843	3.6097	0.7920	3.4907	0.8204
16	3.6179	0.7808	3.6142	0.7866	3.5610	0.8020
17	3.6180	0.7793	3.6090	0.7919	3.5608	0.8020
18	3.6180	0.7794	3.6153	0.7850	3.6207	0.7831
19	3.6171	0.7837	3.6153	0.7851	3.6151	0.7851
20	3.6151	0.7851	3.6153	0.7851	3.6147	0.7854
21	3.6141	0.7854				

Recourse to other methods of series analysis, such as the wide range of ratio type methods that exist, is found to be unsatisfactory. Because q_{c} is not the closest singularity to the origin, these methods cannot be directly used. A range of transformations have also been tried, but these do not produce exponent estimates of sufficient accuracy. Indeed, the estimates of β obtained by these methods is typically 0.275 ± 0.001.

Accordingly, we conclude that $\beta=0.2764 \pm 0.0001$, and that the fraction $\frac{199}{720}$ is the most likely exact rational. That being said, the appeal of the slightly larger fraction $\frac{5}{18}=0.2777 \ldots$ is undeniably far greater aesthetically. Regrettably, we are unable to find any convincing numerical evidence to favour this value.

Acknowledgments

We thank D W Wood for his interesting comments and are grateful to J Adler and J Cardy for introducing us to this problem. One of us (AJG) thanks the Australian Research Grants Scheme for financial support.

References

Baker G A Jr and Hunter D L 1973 Phys. Rev. B 7 3377-92
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Academic)

- 1987 J. Phys. A: Math. Gen. 20 5241-61

Baxter R J and Enting I G 1978 J. Phys. A: Math. Gen. 11 2463-73
-_ 1979 J. Stat. Phys. 21 103-23
Baxter R J, Enting I G and Tsang S K 1980 J. Stat. Phys. 22 465-89
Baxter R J, Sykes M F and Watts M G 1975 J. Phys. A: Math. Gen. 8 245-51
Bhat V K, Bhan H L and Singh Y 1986 J. Phys. A: Math. Gen. 19 3261-5
Bideaux R and Forgacs G 1984 J. Phys. A: Math. Gen. 17 1853-60
Blease J 1977 J. Phys. C: Solid State Phys. 10 917-24
De'Bell K and Essam J W 1983 J. Phys. A: Math. Gen. $163145-7$
Essam J W, De'Bell K, Adler J and Bhatti F M 1986 Phys. Rev. B 33 1982-6
Essam J W, Guttmann A J and De'Bell K 1988 J. Phys. A: Math. Gen. to be published
Forgacs G and Privman V 1987 J. Stat. Phys. 49 1165-80
Hilhorst H J, Schick M and van Leeuwen J M J 1978 Phys. Rev. Lett. 40 1605-8
Kinzel W 1983 Percolation Structures and Processes (Annals of the Israel Physical Society 5) ed G Deutscher,
R Zallen and and J Adler (Bristol: Adam Hilger) pp 425-45
Sloane N J A 1973 A Handbook of Integer Sequences (New York: Academic)
Young D M and Gegory R T 1973 A Survey of Numerical Mathematics vol 2 (Reading, MA: Addison-Wesley)

